3.10 \(\int \frac {1}{\sqrt {b \tan ^3(e+f x)}} \, dx\)

Optimal. Leaf size=255 \[ -\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{-1}\left (\sqrt {2} \sqrt {\tan (e+f x)}+1\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \log \left (\tan (e+f x)-\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{\frac {3}{2}}(e+f x) \log \left (\tan (e+f x)+\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}} \]

[Out]

-2*tan(f*x+e)/f/(b*tan(f*x+e)^3)^(1/2)-1/2*arctan(-1+2^(1/2)*tan(f*x+e)^(1/2))*tan(f*x+e)^(3/2)/f*2^(1/2)/(b*t
an(f*x+e)^3)^(1/2)-1/2*arctan(1+2^(1/2)*tan(f*x+e)^(1/2))*tan(f*x+e)^(3/2)/f*2^(1/2)/(b*tan(f*x+e)^3)^(1/2)-1/
4*ln(1-2^(1/2)*tan(f*x+e)^(1/2)+tan(f*x+e))*tan(f*x+e)^(3/2)/f*2^(1/2)/(b*tan(f*x+e)^3)^(1/2)+1/4*ln(1+2^(1/2)
*tan(f*x+e)^(1/2)+tan(f*x+e))*tan(f*x+e)^(3/2)/f*2^(1/2)/(b*tan(f*x+e)^3)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3658, 3474, 3476, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac {\tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{-1}\left (\sqrt {2} \sqrt {\tan (e+f x)}+1\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \log \left (\tan (e+f x)-\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{\frac {3}{2}}(e+f x) \log \left (\tan (e+f x)+\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[b*Tan[e + f*x]^3],x]

[Out]

(-2*Tan[e + f*x])/(f*Sqrt[b*Tan[e + f*x]^3]) + (ArcTan[1 - Sqrt[2]*Sqrt[Tan[e + f*x]]]*Tan[e + f*x]^(3/2))/(Sq
rt[2]*f*Sqrt[b*Tan[e + f*x]^3]) - (ArcTan[1 + Sqrt[2]*Sqrt[Tan[e + f*x]]]*Tan[e + f*x]^(3/2))/(Sqrt[2]*f*Sqrt[
b*Tan[e + f*x]^3]) - (Log[1 - Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]*Tan[e + f*x]^(3/2))/(2*Sqrt[2]*f*Sqrt
[b*Tan[e + f*x]^3]) + (Log[1 + Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]*Tan[e + f*x]^(3/2))/(2*Sqrt[2]*f*Sqr
t[b*Tan[e + f*x]^3])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {b \tan ^3(e+f x)}} \, dx &=\frac {\tan ^{\frac {3}{2}}(e+f x) \int \frac {1}{\tan ^{\frac {3}{2}}(e+f x)} \, dx}{\sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \int \sqrt {\tan (e+f x)} \, dx}{\sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {\sqrt {x}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f \sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\left (2 \tan ^{\frac {3}{2}}(e+f x)\right ) \operatorname {Subst}\left (\int \frac {x^2}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{\frac {3}{2}}(e+f x) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}\\ &=-\frac {2 \tan (e+f x)}{f \sqrt {b \tan ^3(e+f x)}}+\frac {\tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\tan ^{-1}\left (1+\sqrt {2} \sqrt {\tan (e+f x)}\right ) \tan ^{\frac {3}{2}}(e+f x)}{\sqrt {2} f \sqrt {b \tan ^3(e+f x)}}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \tan ^{\frac {3}{2}}(e+f x)}{2 \sqrt {2} f \sqrt {b \tan ^3(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 43, normalized size = 0.17 \[ -\frac {2 \tan (e+f x) \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\tan ^2(e+f x)\right )}{f \sqrt {b \tan ^3(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[b*Tan[e + f*x]^3],x]

[Out]

(-2*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[e + f*x]^2]*Tan[e + f*x])/(f*Sqrt[b*Tan[e + f*x]^3])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(f*x+e)^3)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(f*x+e)^3)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)2*b^2*(-1/2*sqrt(abs(b))*abs(b)*atan(sqr
t(2)*(1/2*sqrt(2)*sqrt(abs(b))+sqrt(b*tan(f*x+exp(1))))/sqrt(abs(b)))/sqrt(2)/b^4/f/sign(tan(f*x+exp(1)))-1/2*
sqrt(abs(b))*abs(b)*atan(sqrt(2)*(-1/2*sqrt(2)*sqrt(abs(b))+sqrt(b*tan(f*x+exp(1))))/sqrt(abs(b)))/sqrt(2)/b^4
/f/sign(tan(f*x+exp(1)))+1/4*sqrt(abs(b))*abs(b)*ln(b*tan(f*x+exp(1))+sqrt(2)*sqrt(b*tan(f*x+exp(1)))*sqrt(abs
(b))+abs(b))/sqrt(2)/b^4/f/sign(tan(f*x+exp(1)))-1/4*sqrt(abs(b))*abs(b)*ln(b*tan(f*x+exp(1))-sqrt(2)*sqrt(b*t
an(f*x+exp(1)))*sqrt(abs(b))+abs(b))/sqrt(2)/b^4/f/sign(tan(f*x+exp(1)))-1/b^2/sqrt(b*tan(f*x+exp(1)))/f/sign(
tan(f*x+exp(1))))

________________________________________________________________________________________

maple [A]  time = 0.31, size = 211, normalized size = 0.83 \[ -\frac {\tan \left (f x +e \right ) \left (\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}\, \ln \left (-\frac {\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}-b \tan \left (f x +e \right )-\sqrt {b^{2}}}{b \tan \left (f x +e \right )+\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {b^{2}}}\right )+2 \sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}+\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )+2 \sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}-\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )+8 \left (b^{2}\right )^{\frac {1}{4}}\right )}{4 f \sqrt {b \left (\tan ^{3}\left (f x +e \right )\right )}\, \left (b^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*tan(f*x+e)^3)^(1/2),x)

[Out]

-1/4/f*tan(f*x+e)*(2^(1/2)*(b*tan(f*x+e))^(1/2)*ln(-((b^2)^(1/4)*(b*tan(f*x+e))^(1/2)*2^(1/2)-b*tan(f*x+e)-(b^
2)^(1/2))/(b*tan(f*x+e)+(b^2)^(1/4)*(b*tan(f*x+e))^(1/2)*2^(1/2)+(b^2)^(1/2)))+2*2^(1/2)*(b*tan(f*x+e))^(1/2)*
arctan((2^(1/2)*(b*tan(f*x+e))^(1/2)+(b^2)^(1/4))/(b^2)^(1/4))+2*2^(1/2)*(b*tan(f*x+e))^(1/2)*arctan((2^(1/2)*
(b*tan(f*x+e))^(1/2)-(b^2)^(1/4))/(b^2)^(1/4))+8*(b^2)^(1/4))/(b*tan(f*x+e)^3)^(1/2)/(b^2)^(1/4)

________________________________________________________________________________________

maxima [A]  time = 1.33, size = 126, normalized size = 0.49 \[ -\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (f x + e\right )}\right )}\right ) + 2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (f x + e\right )}\right )}\right ) - \sqrt {2} \log \left (\sqrt {2} \sqrt {\tan \left (f x + e\right )} + \tan \left (f x + e\right ) + 1\right ) + \sqrt {2} \log \left (-\sqrt {2} \sqrt {\tan \left (f x + e\right )} + \tan \left (f x + e\right ) + 1\right )}{\sqrt {b}} + \frac {8}{\sqrt {b} \sqrt {\tan \left (f x + e\right )}}}{4 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(f*x+e)^3)^(1/2),x, algorithm="maxima")

[Out]

-1/4*((2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(f*x + e)))) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)
 - 2*sqrt(tan(f*x + e)))) - sqrt(2)*log(sqrt(2)*sqrt(tan(f*x + e)) + tan(f*x + e) + 1) + sqrt(2)*log(-sqrt(2)*
sqrt(tan(f*x + e)) + tan(f*x + e) + 1))/sqrt(b) + 8/(sqrt(b)*sqrt(tan(f*x + e))))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*tan(e + f*x)^3)^(1/2),x)

[Out]

int(1/(b*tan(e + f*x)^3)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b \tan ^{3}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(f*x+e)**3)**(1/2),x)

[Out]

Integral(1/sqrt(b*tan(e + f*x)**3), x)

________________________________________________________________________________________